热处理奥氏体不锈钢对激光熔覆 Ni 基复合 涂层组织与性能的影响

刘洪喜 曾维华 蒋业华 张晓伟 王传琦

(昆明理工大学材料科学与工程学院,云南昆明 650093)

摘要 采用 6 kW 横流 CO₂ 激光器在经正火处理的 1Cr18Ni9Ti 不锈钢基材表面激光熔覆了 Ni60CuMoW+ 1.00%Ti 合金粉末复合涂层,研究了涂层的物相结构、金相组织、显微硬度和耐蚀性能。X 射线衍射(XRD)分析揭 示出熔覆层除 γ-(Fe,Ni)固溶体外,还含有 NiCu、CrNiFeC、CuNiTi₂、Mo₉Ti 金属间化合物和 Ni₂Si、Fe₃Ni₃B、WC、 TiC 等硬质相。光学显微观察显示,熔覆层组织均匀、致密,与基体结合良好。显微硬度测试得出涂层硬度最高出 现在距表面 0.5~1.0 mm 范围内,其值达到 649 HV。在质量分数 5.0%的 NaCl 饱和溶液中的电化学分析结果表 明,激光熔覆复合涂层的自腐蚀电位(*E*_{corr})比基体上升了 192.8 mV,腐蚀电流密度降低了 26.8%。综合比较得 出,基材正火处理后的表面激光熔覆涂层耐腐蚀性能最好。

关键词 激光技术;激光熔覆;正火处理;复合涂层;显微组织;耐蚀性能 中图分类号 TG156.99;TN249 **文献标识码** A **doi**: 10.3788/CJL201138.s103001

Effect of Heat Treatment Austenitic Stainless Steel on Microstructure and Property of Laser Cladding Ni-Based Composite Coatings

Liu Hongxi Zeng Weihua Jiang Yehua Zhang Xiaowei Wang Chuanqi (School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China)

Abstract Ni60CuMoW + 1.00% Ti alloy powder laser cladding composite coatings was fabricated on 1Cr18Ni9Ti stainless steel surface with normalizing treatment by 6 kW transverse-flow CO₂ laser apparatus. The clad coatings was examined and tested for chemical composition. microstructure feature, phase structure, microhardness, corrosion behavior and metallography by X-ray diffraction (XRD), microhardness test, electrochemistry workstation and optical microscopy (OM), respectively. The results show that some new phases are formed in the cladding layer which consist of γ -(Fe, Ni) solid solution, intermetallic compound NiCu, CrNiFeC, CuNiTi₂, Mo₉Ti and harden phase Ni₂Si, Fe₃Ni₃B, WC, TiC. OM observation displays that the microstructure of cladding layer is homogeneous, compactness and forming a good metallurgical bonding interface. Micro-hardness measurement exhibits that the highest hardness lies in $0.5 \sim 1.0$ mm range from the surface and reaches 649 HV. Electrochemical corrosion test in 5.0% NaCl saturated solution indicates that the self-corrosion potential (E_{corr}) of composite coating sample increases by 192.8 mV and the corrosion current density (I_{corr}) decreases by 26.8%. Compared with the substrate and the composite coating, the corrosion resistance of stainless steel with normalizing samples improved significantly. **Key words** laser technique; laser cladding; normalizing; composite coating; microstructure; corrosion resistance **OCIS codes** 140.3470; 140.3390; 310.3915; 160.3900

1 引 言

激光熔覆是当今发展较快的一种表面改性技术,它通过高能激光束使合金粉末与基体间发生复

杂的冶金化学反应而形成性能良好的结合层,以改善善基体的硬度、耐磨耐蚀和高温抗氧化性能^[1~3]。 奥氏体不锈钢因其具有优良的耐腐蚀性能而普遍应

收稿日期: 2011-03-10; 收到修改稿日期: 2011-05-30

基金项目:国家自然科学基金(51165015)和云南省自然科学基金(2008ZC021M)资助课题。

作者简介:刘洪喜(1972—),男,教授,主要从事离子束和激光束表面改性方面的研究。E-mail: vipliuhx@yahoo.com.cn

用于航天航空、汽车、采矿、电力等领域^[4~6]。但奥 氏体不锈钢往往通过固溶处理得到,加热时间较长 而存在过热,造成晶粒粗大,降低力学性能和抗晶间 腐蚀性能,且在热加工制造过程中易产生裂纹。通 过改善激光加工前基材的热处理状态,以获得保持 甚至提高基材原有力学性能及耐腐蚀性能,且无裂 纹缺陷的复合涂层表面改性方法已受到国内外学者 的广泛关注^[7~10]。基于此,本文采用大功率横流 CO₂激光器在经正火处理的1Cr18Ni9Ti不锈钢表 面进行 Ni60CuMoW+1.00%Ti 合金粉末熔覆,分 析比较了基材热处理后激光熔覆复合涂层的物相组 成、微观组织、显微硬度、耐腐蚀性能,以期为激光熔 覆在不锈钢的表面改性应用方面提供一条新途径。

2 实验方法

2.1 实验材料

实验用1Cr18Ni9Ti不锈钢经高温固溶处理和 淬火处理,熔点为1427℃,其化学成分见表1。基 材尺寸为100 mm×30 mm×3 mm,表面经金相砂 纸打磨后用无水乙醇清洗并放置于烤箱烘干, 100℃预热2 h。另一基材置于加热炉加热到 930℃保温6 min 后空冷。

表1 1Cr18Ni9Ti不锈钢化学成分(质量分数,%)

Table 1 Chemical composition of 1Cr18Ni9Ti stainless steel (mass fraction, %)

С	Si	Mn	Р	S	Ni	Cr	Ti
≪0.12	≪1.00	≪2.00	≪0.035	≪0.030	8.00~11.00	17.00~19.00	$5(C-0.2) \sim 0.80$

2.2 涂层材料

涂层材料选择 Ni60CuMoW+1.00%Ti 合金粉末,熔点为1100 ℃,粒度大小为150 目(106 μm),松装 密度 4.7 g/cm³。其化学成分见表 2。

表 2 实验所用的镍基合金粉末的化学组成(质量分数,%)

Table 2 Chemical composition of nickel-based alloy powder (mass fraction, $\frac{1}{2}$)

С	О	Si	В	Cu	Fe	Cr	W	Ni
0.67	<0.08	4.13	3.17	3.31	4.56	16.72	3.00	Bal.

2.3 激光熔覆和热处理工艺

利用 GS-TFL-6000 型横流 CO₂ 激光器及西门 子 802D 五轴四联动数控加工机床进行激光熔覆, 同步送粉,氦气作保护气体,进行单道熔覆。激光熔 覆功率为 3.8 kW,扫描速率 500 mm/min,光斑直 径 6 mm,送粉量 0.2 g/s,离焦量 55 mm,保护气流 量 8 L/h。为方便起见,基材、正火处理、熔覆和基 材正火后熔覆的试样分别用 S0、S00、S1 和 S01 表 示,热处理工艺及不同工艺下的裂纹数量见表 3。

表 3 热处理工艺及熔覆结果

Tabl	le 3	Heat	treatment	and	results	of	the	coating
------	------	------	-----------	-----	---------	----	-----	---------

Sample	Heat treatment	Number of
No.	processes	cracks
S0	Substrate	0
S00	Substrate+930 °C Nomalizing	0
S1	Substrate+Laser cladding	2
S01	Substrate+930 °C Nomalizing+Laser cladding	0

2.4 性能表征

使用线切割沿熔覆层横截面截取试样,不同粒 度的金相砂纸由粗到细研磨后抛光腐蚀,腐蚀剂为 王水[V(HCl):V(HNO₃) = 3:1配置]。利用 LEICA DFC280 光学图像分析系统观察熔覆层组 织。通过日本 D/MAX-3BX 射线衍射仪(XRD)分 析熔覆层物相组成,扫描范围 $10^{\circ} \sim 100^{\circ}$,Cu 靶 K_a 线波长1.5406 nm,管电压 40 kV,管电流 30 mA,扫 描速度 $10(^{\circ})/min$ 。利用华银 HVS-1000A 数显显 微硬度计测量激光熔覆层硬度,载荷 1000 g,加载持 续时间 15 s。电化学腐蚀采用 PS-268A 型电化学 工作站,腐蚀介质为质量分数 5.0%的 NaCl 饱和溶 液。截取表面无裂纹和气孔缺陷的试样作工作电 极,尺寸 $10 \text{ mm} \times 6 \text{ mm} \times 5 \text{ mm}$,导线引出,松香封 嵌,工作面积1 cm²。测量前用无水乙醇清洗,在腐 蚀溶液中浸泡 30 min。熔覆层试样为工作电极,铂 为辅助电极,饱和甘汞电极(SCE)为参比电极。电 位测试范围- $1700 \sim 200 \text{ mV}$,延时 600 s,采样周期 1 s,扫描速度 1 mV/s。

3 结果与分析

3.1 热处理工艺选定依据

正火处理温度的选取及保温时间的确定与基材 含碳量和合金元素有关。正火处理是将奥氏体不锈 钢加热到 A_{C3} (A_{cem})以上适当温度,对含 Ti 的不锈 钢,需采用更高温度,即A_{cem}+100 ℃~150 ℃,A_{cem} 实际温度点为 840 ℃。故本文选取的正火温度 930 ℃。正火处理保温时间[11]为

$$\tau = KD \tag{1}$$

式中D为工件有效厚度;K为加热系数,一般取 $K=1.5\sim2.0 \text{ min/mm}$ 。故 $\tau=4.5\sim6 \text{ min}$ 。本文 选取保温时间为 6.0 min。

基材正火处理的工艺路线如图 1 所示。温度控 制在(840±10)℃以下,起始升温速度控制在 1~ 2 ℃/min,约 320 min 接近(840±10)℃时,将升温 速度控制在 2~3 ℃/min,加热到(930±10)℃之间 升温速度控制一致,从而保温 6 min,使得基材透热 均温。从铁碳相图看出,不锈钢发生了完全奥氏体 化转变。随后空气中自然冷却。

图 1 正火处理的工艺曲线 Fig. 1 Curve of normalizing treatment

3.2 激光熔覆层宏观形貌

激光熔覆过程如图 2 所示。激光熔覆 Ni60CuMoW+1.00%Ti合金粉末所形成的单道熔 覆复合涂层形貌特征如图 3(a)所示。可以看出,不 同激光熔覆层表面存在少量宏观裂纹和气孔。裂纹 与光束扫描方向垂直。其主要原因,一方面是因为 基材奥氏体钢的热物理性能,导热系数、线膨胀系数 与熔覆材料差别较大,易导致热裂纹;另一方面则是 由于固态相变时发生体积变化,产生应力。两部分 的综合作用致使在气孔、夹杂物尖端处形成应力集 中而导致裂纹^[12~14]。基材正火处理后,在相同参数 下的激光熔覆涂层形貌特征如图 3(b)所示。可以 看出,涂层中不存在裂纹和气孔缺陷。主要原因是 通过 930 ℃正火后,基本消除了基材淬火热加工应 力,减少了激光熔覆快冷快热淬火应力的叠加,从而 使得涂层中应力大大减少。

3.3 熔覆层 XRD 物相分析

图 4 是加入 Ti 合金粉末前后不锈钢表面激光 熔覆 Ni60CuMoW 涂层的 XRD 图谱。由图可见, 熔覆层除 γ-(Fe, Ni)固溶体外,还含有 NiCu、 CrNiFeC 金属间化合物和 Ni₂Si、Fe₃Ni₃B、WC 等少 量硬质相。加入 Ti 合金元素后,在激光熔覆快速加 热和熔化温度下,Ti 能与 Cu、Ni、Mo 和 C 等产生化

图 2 激光熔覆示意图

. Al	R			15 <u>1</u>	
ar	للعرور	under and		wither stars	and the second
	-	1	ano al	Antes	(b)
		-	-		
	-	-	-	North Land	a trade

图 3 (a)试样 S1 和(b) S01 熔覆层的宏观形貌特征 Fig. 3 Macroscopic morphology of (a) S1 and (b) S01 coatings

学反应分别生成 CuNiTi₂、Mo₉Ti 化合物和 TiC。 从衍射图谱还可看出,γ-(Fe, Ni)固溶体和 NiCu 的 峰值最高,且重叠于主峰。Cr、Cu、B、Si 与 Fe、Ni 反 应生成的金属间化合物和少量硬质相,起到固溶强 化作用。Mo、Ti 含量不多,生成化合物和硬质相所 对应的峰值也相对较弱,但起到了弥散强化和细化 晶粒的作用,对提高熔覆涂层的硬度和耐蚀性能有 着重要影响^[15,16]。

图 4 加入 Ti 合金粉末前后激光熔覆涂层的 XRD 图谱 Fig. 4 XRD patterns of laser cladding coating before and after Ti alloy powder

3.4 熔覆层微观组织分析

图 5(a)、(b)分别为 S0、S00 试样在 200 倍下横

截面的金相组织形貌。S0 奥氏体晶粒粗大,大小不一,通过正火热处理后晶粒细化,得到细小的珠光体和渗碳体组织,消除了在结晶过程中产生显微组织的不均匀性,从而降低了通过固溶处理和淬火后基材所产生的内应力。

图 5(c)、(d)分别为 S1、S01 试样在 200 倍下横 截面的金相组织形貌。从上到下依次分为熔覆区 (CZ)、结合区(BZ)、热影响区(HAZ)和基体 (SUB)。CZ区的组织均匀致密,结晶形态由平面晶 向胞状晶和树枝晶发展,S01 试样 CZ 区中部白色析 出物增加,且树枝状明显。涂层与基体形成冶金结 合,出现一条非常狭窄的白亮带,即 BZ 区,然而通过 正火热处理的基材涂层中 BZ 区并不明显。HAZ 区 晶粒变得细小,而且保持在 BZ 界面下200~250 μm 范围,后晶粒长大过渡到 SUB 奥氏体组织。主要原 因是刚开始基材表面温度低,温度梯度较大,结晶速 度小,成分过冷接近于零,非均匀形核主要依附于不 锈钢基材表面,形成一层平面晶。随着凝固过程的进 行和液-固界面的推进,结晶区前沿溶质变化程度逐 渐加强,而温度梯度逐渐变小,结晶速度变大,成分过 冷增加,使得平面晶向胞状晶和树枝晶发展^[17]。然 而,基材正火处理后受到激光熔覆的作用属于快冷快 热过程,相当于淬火,铁素体向奥氏体转变,相变时间 短暂,故晶粒呈现出不同程度的大小分布。

图 5 基材及基材正火处理与激光熔覆复合涂层的微观组织形貌。(a)试样 S0;(b)试样 S00;(c)试样 S1;(d)试样 S01 Fig. 5 Microstructure of the substrate and the normalizing substrate and the laser cladding sample.

(a) S0; (b) S00; (c) S1; (d) S01

3.5 显微硬度测试

图 6 是基材及基材正火处理与各激光熔覆复合 涂层横截面上不同区域的显微硬度测试结果。以结 合面为起始点(0 点),自上而下不同距离打点,熔覆 层之上距离为正值,之下距离为负值,同一层面上打 3 个点取平均值。从图可知,基材 S0 试样稍微比基 材正火处理 S00 试样显微硬度高,但不明显。各熔 覆复合涂层显微硬度均明显高于基材(基材硬度小 于等于 200 HV),提高了 2~3 倍。试样 S1 与试样 S01 相比较,在 0~0.5 mm 之间,S1 的显微硬度要 大于试样 S01,其值为 100~120 HV。而在 0.5~ 1.0 mm 之间,S01 的显微硬度出现最大值,达到 649 HV,大于试样 S1,其值约为 100~200 HV。在 1.0 ~1.2 mm之间,S1 试样显微硬度任呈上升趋 势,而试样 S01 则呈下降趋势,目比 S1 值低。

图 6 各激光熔覆复合涂层的显微硬度曲线

Fig. 6 Micorohardness curves of different samples

主要原因是由于基材正火后处理激光熔覆,相 当于淬火,发生相变,重新奥氏体化,然而转变时间 非常迅速,转变不彻底,存在部分铁素体,硬度有所 下降。基材在激光熔覆过程中,由于快速加热和快 速冷却作用,奥氏体转变为马氏体,使得硬度有所提高。另外,正火处理能消除内应力,减少了激光熔覆过程中热应力的叠加。再者,硬质相 WC 颗粒比重较大,分布不均,并且 Cr、Cu、B、Si 元素对涂层起到固溶强化作用,Mo 和 Ti 合金元素的加入使得组织均匀细小,起到弥散强化效果。综合作用的结果使得熔覆涂层的显微硬度值较基材明显提高,且试样S1 和 S01 显微硬度出现较大波动。

3.6 腐蚀性能测试

图 7 是基材及基材正火处理与各激光熔覆复合 涂层试样在质量分数 5.0%的 NaCl 饱和溶液中的电 化学腐蚀阳极极化曲线,表4是相应的电化学腐蚀拟 合参数。可看出,S0 与 S00、S1 与 S01 试样的极化曲 线走向极为相似,S01 试样约在-250.00 mV电位阳 极区出现钝化现象,其余在阳极区没产生钝化。自腐 蚀电位 S00 最高为-667.70 mV, S01 次之, S1 相对 最小为-866.70 mV,但三者远远高于 S0。基体 S0 试样腐蚀电流密度为 1.98 µA/cm², S00 为 0.23 μA/cm²,下降了88.4%。而S1 试样腐蚀电流 密度为 1.36 µA/cm², S01 则增加 7%。此外, 熔覆 试样的极化电阻均比基体大,最大是基材正火处理 试样,为 76623.22 Ω·cm²,比基材增大了 7.5 倍。 这是因为熔覆层腐蚀动力学阻力增大,产生的钝化 区间较大,易发生钝化,使得熔覆层的耐腐蚀性能增 加^[18]。另外,由于正火处理可消除内应力,使组织 细化,从而增强了耐蚀性。由此可见,熔覆层耐腐蚀 性能均优于基体,正火处理达到熔覆前的目的。综 合得出 S01 试样耐腐蚀性能最好。

图 7 基材及基材正火处理与各激光熔覆复合涂层的 极化曲线

Fig. 7 Polarization curves of bare substrate, normalizing treatment sample and laser cladding sample

究其原因,一方面,基材正火处理后熔覆复合涂 层不存在裂纹、气孔缺陷,而基材未经正火处理则反 之,腐蚀溶液中存在侵蚀性的 Cl⁻ 阴离子,耐蚀性能 下降。另一方面,基材正火状态下的内应力未被消 除,激光熔覆后应力叠加,残余应力增大,易产生应 力腐蚀。两者的综合作用导致腐蚀加快,耐腐蚀性 能降低。但由于熔覆层 γ-(Fe, Ni)固溶体中含有 Cr、Cu、B、Si元素与 Fe、Ni 生成的金属间化合物,对 熔覆层能起到固溶强化作用,Mo 和 Ti 合金元素也 能细化晶粒,使得 CZ 区的上部组织比较均匀、细 小,从而提高了其耐蚀性能^[19]。

表 4 基材及基材正火处理与各激光熔覆复合涂层的 电化学腐蚀拟合参数

 Table 4
 Electrochemical corrosion simulation parameters

 of substrate and heat treatment coatings

Sample No.	$E_{\rm cor}/{ m mV}$	$R_{ m p}/(\Omega \cdot { m cm}^2)$	$I_{\rm cor}/(\mu{ m A/cm^2})$
S0	-908.40	8970.33	1.98
S00	-667.30	76623.22	0.23
S1	-866.70	16023.36	1.36
S01	-715.60	10872.74	1.45

 $E_{\rm corr}$ -Self-corrosive potential; $R_{\rm p}$ -Polarization resistance; $I_{\rm corr}$ -Corrosion current density

4 结 论

1) 在经正火处理的 1Cr18Ni9Ti 不锈钢表面激 光熔覆了 Ni60CuMoW+1.00%Ti 合金粉末,得到 了低残余应力、无裂纹和气孔缺陷的复合涂层。

 溶覆涂层除 γ-(Fe, Ni)固溶体外,还含有 NiCu、CrNiFeC、CuNiTi₂、Mo₉Ti 金属间化合物和 Ni₂Si、Fe₃Ni₃B、WC、TiC等硬质相。

3) 正火处理的基材得到了细小的珠光体和渗碳体组织,而正火处理前后激光熔覆复合涂层的结晶形态则一致,由平面晶向胞状晶和树枝晶发展, CZ 区的组织均匀致密。

4) 正火处理后激光熔覆试样的显微硬度和耐腐蚀性能均得到明显改善。复合涂层横截面的显微硬度为基体的 2~3 倍,最高出现在表面 0.5~
1.0 mm范围之间,其值达到 649 HV;自腐蚀电位上升了 192.80 mV,电流密度下降了 26.8%。

参考文献

- 1 Igor Smurov. Laser cladding and laser assisted direct manufacturing[J]. Surf. Coat. Technol, 2008, 202 (18): 4496~4502
- 2 C. P. Paul, A. Khajepour. Automated laser fabrication of cemented carbide components[J]. Opt. Laser Technol., 2008, 40(5): 735~741
- 3 Song Jie, Zhang Qingmao, Lin Xiaocong et al.. Wear performance of Fe-based alloy coating on the 40Cr steel treated by laser cladding[J]. High Power Laser and Particle Beams, 2008, 20(1): 21~25

宋 杰,张庆茂,林晓聪等. 40Cr 钢表面激光熔覆层的磨损性

能[J]. 强激光与粒子束, 2008, 20(1): 21~25

- 4 A. Viswanathan, D. Sastikumar, Harish Kumar *et al.*. Formation of WC-iron silicide (Fe₅Si₃) composite clad layer on AISI 316L stainless steel by high power (CO₂) laser[J]. Surf. Coat. Technol., 2009, **203**(12): 1618~1623
- 5 J. M. Amado, M. J. Tobar, J. C. Alvarez *et al.*. Laser cladding of tungsten carbides hardfacing alloys for the mining and mineral industry [J]. *Appl. Surf. Sci.*, 2009, **255** (10): 5553~5556
- 6 M. J. Tobar, C. álvarez, J. M. Amado *et al.*. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel[J]. *Surf. Coat. Technol.*, 2006, **200** (22-23): 6313~6317
- 7 N. R. Baddoo. Stainless steel in construction: a review of research, applications, challenges and opportunities [J]. Constructional Steel Research, 2008, 64(11): 1199~1206
- 8 Félix A. España, Vamsi Krishna Balla. Amit Bandyopadhyay. Laser surface modification of AISI 410 stainless steel with brass for enhanced thermal properties [J]. Surf. Coat. Technol., 2010, 204(15): 2510~2517
- 9 Dharani Sowdari, Pradip Majumdar. Finite element analysis of laser irradiated metal heating and melting processes [J]. Opt. Laser Technol., 2010, 42(6): 855~865
- 10 Zhang Dawei, Hao Wensen, Duan Huiling *et al.*. Effect of heat treatment on microstructure and erosion wear properties of laser cladded Ni alloy coating [J]. *Transactions of Metal Heat Treatment*, 1999, **20**(1): 40~47

张大伟,赫文森,段慧玲等.热处理对激光熔覆 Ni 合金层的组 织及冲蚀磨损性能的影响[J]. 金属热处理学报,1999,20(1): 40~47

- 11 Cui Zhongxi, Qing Yaochun. Metal Science and Heat Treatment [M]. Beijing: China Machine Press, 2004. 278~299 崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2004. 278~299
- 12 J. Radziejewska, S. J. Skrzypek. Microstructure and residual stresses in surface layer of simultaneously laser alloyed and burnished steel [J]. *Materials Processing Technology*, 2009,

209(4): 2047~2056

13 Zhu Bailin, Hu Mulin, Chen Li et al.. Research status of cracking in laser cladding layer[J]. Heat Treatment of Metals, 2000, (7): 1~4

祝柏林,胡木林,陈 俐等.激光熔覆层开裂问题的研究现状 [J]. 金属热处理,2000,(7):1~4

14 Cha Ying, Zhou Changchi, Tang Xinan et al.. Study of improvement of properties of laser cladding Ni super-alloy and WC composite layers [J]. Chinese J. Lasers, 1999, A26 (10): 947~950

查 莹,周昌炽,唐西南等.激光熔覆镍基合金和陶瓷硬质相复 合涂层性能的研究[J].中国激光,1999,**A26**(10):947~950

15 Tian Nailiang, Du Rongjian, Zhou Changchi. Study on stress status of WC doped Ni-based alloy by laser cladding[J]. Chinese J. Lasers, 2004, 31(4): 505~508 田乃良, 杜荣建, 周昌炽. 激光熔覆添加碳化钨的镍基合金应力

状况研究[J]. 中国激光, 2004, **31**(4): 505~508

- 16 Chen Huahui, Xu Caiyun, Wang Zhenting *et al.*. Microstructure change of WC particles reinforced nickel based alloy laser cladding coatings during heat treatment[J]. *China Surface Engineering*, 2010, 23(2): 64~68 陈华辉,徐采云,王振廷等. WC 颗粒增强 Ni 基合金复合涂层
- 的热处理组织变化[J]. 中国表面工程, 2010, **23**(2): 64~68 17 Tu Yi, Zhang Yongzhong, Xi Mingzhe. Investigation of nickelbased alloys coating on stainless steel by laser cladding [J]. *Chinese J. Rare Metals*, 2008, **32**(5): 598~604 涂 义,张永忠,席明哲. 不锈钢表面激光熔覆镍基合金层研究 [J]. 稀有金属, 2008, **32**(5): 598~604
- 18 F. Presuel-Moreno, M. A. Jakab, N. Tailleart *et al.*. Corrosion-resistant metallic coatings[J]. *Material Today*, 2008, 11(10): 14~23
- 19 Fan Ding, Li Qiang, Zhang Jianbin. Microstructure and corrosion performance of laser melt-clad FeNiCrAl alloying coating [J]. Journal of Lanzhou University of Technology, 2009, 35(2): 13~16

樊 丁,李 强,张建斌.激光熔覆 FeNiCrAl 合金涂层的组织 与腐蚀性能[J]. 兰州理エ大学学报,2009,**35**(2):13~16

栏目编辑: 宋梅梅